CT Publicalions

Surviving Methe

Bm As Chemietry

by

Dr Robert Mitchell

www.SurvivingMathsinASchemistry.co.uk

A catalogue record for this book is available from the British Library
ISBN 978-1-907769-01-6
First published in August 2010 by
CT Publications

Copyright © Dr Robert Mitchell 2010
The right of Robert Mitchell to be identified as the author of this work has been asserted by him in accordance with the Copyright and Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the publisher at the address below.

Published by
CT Publications*
40 Higher Bridge Street
Bolton
Greater Manchester
BL1 2HA
First printing August 2010
10987654321
*CT Publications is owned by Chemistry Tutorials located at the same address.

Contents

Contents 3
Acknowledgements4
About the author4
Other books by the author 5
Preface 6
Student resources 7
How to use this book 8
Section 1: Mathematical Requirements 9
Arithmetical and Numerical Computation 11
Handling Data 14
Algebra 16
Graphs 21
Geometry 24
End of Section 1 Test 26
Section 2: Calculations in AS Chemistry Specifications 31
Mole Calculations 32
Moles and numbers 32
Moles and mass 33
Moles and solution volumes and concentrations 42
Moles and gas volumes 44
Putting it all together 46
Energetics 53
Bond Enthalpy Calculations 53
Hess' Law Calculations. 55
Calorimetric Calculations 60
Half-life (WJEC only) 64
Number of particles 64
Time taken 65
Half-life determination 66
End of Section 2 Test 67
Mole questions 67
Energetics Questions 72
Half-life questions 74
Section 3: Examination-style Questions 75
Questions involving Moles 76
Questions involving Energy 83
Questions involving half-life 88
Section 4: Answers to the Questions. 89
End of Section 1 Test Answers 90
End of Section 2 Test Answers 95
Mole questions 95
Energetics Questions 101
Half-life questions 104
Answers to examination-style questions 105
Mole Questions 105
Energetics Questions 109
Half life 111
Index 112

Acknowledgements

I would like to thank Denise for her infinite patience, her reading and proofing skills and having the unending ability to encourage and support the production of this work. Thanks also to my Mummy, Joyce and Brother, Colin for not getting too mithered about it all.

About the author

Rob is a private tutor in chemistry and biology in Bolton. He's formerly worked in medical research as technician, research assistant and post-doctoral researcher and has contributed to the publication of over 40 research papers. During a varied career in science, he's been a project leader in industry, a lecturer and examiner and blogs daily as Chemicalguy. He likes dogs, and pies, going to the movies and walking!

Other books by the author

AQA A2 Biology; Writing the Synoptic Essay Surviving Maths in AS Biology

May 2010
September 2010

Ultimate Exam Preparation; AQA Chemistry Unit 1 October 2010 (in press) Ultimate Exam Preparation; AQA Biology Unit 1 November 2010 (in press) Uprooting the Tree of Life (Popular Science) Biofuelishness (Popular Science)

January 2011 (in prep)
March 2011 (in prep)

RAM and mass spectrometry

Relative atomic masses are calculated from the data generated by mass spectrometers. In your AS studies you will learn mass spectrometers generate two numbers, the abundance and the mass to charge ratio, or m / z of isotopes of elements. These can be used to determine the RAM of the element using the equation:

$$
R A M=\frac{\sum\left(\text { abundance } \times \frac{m}{z}\right)}{\text { total abundance }}
$$

Regardless of whether the data in the question is in the form of text, a table or a graph the calculation is always the same.

* Be careful to always write out the substituted equation.
- Check whether the abundance data is given as a percentage, $\%$ or numerical values.
- Make sure the value calculated is within the range of the m / z ratios of the isotopes.
- Check how many decimal places or significant figure the question demands.
- Remember a correct answer does not always guarantee all the method marks.
- The correct unit for RAM is $\mathrm{g} \mathrm{mol}^{-1}$ but only volunteer this if they ask you to.
? Worked Example 1: Using mass spectrometry a sample of copper was found to be composed of $33.4 \%{ }^{63} \mathrm{Cu}$ and $66.6 \%{ }^{65} \mathrm{Cu}$. Use the data to determine the relative atomic mass of the copper in the sample. Give your answer to one decimal pace.

$$
\begin{gathered}
R A M=\frac{(33.4 \times 63)+(66.6 \times 65)}{100}=64.33 \\
R A M=\underline{64.3}(1 \mathrm{dp})
\end{gathered}
$$

The data may also be presented in the form of a table or graph. Try to look beyond the way in which the data is presented. It is not trying to confuse you. The How Science Works component of the A-level expects you to be able to process and use information in different formats.

In the worked examples below you will notice that although the information looks different, the way in which the question is always answered is the same.
10. Cyclohexene, $\mathrm{C}_{6} \mathrm{H}_{10}$ can be prepared by the dehydration of cyclohexanol. A student reacted 8.75 g of cyclohexanol, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$, and obtained 0.0348 mol of cyclohexene.
(a) What is the relative molecular mass of cyclohexene? (1 mark)
(b) What is the percentage by mass of carbon in cyclohexene. (1 mark)
(c) Calculate the percentage yield of cyclohexene. (1 mark)
11. What is the empirical formula of the liquid that contains 38.4% carbon, 4.80 \% hydrogen and 56.8 \% chlorine by mass? (1 mark)

A $\mathrm{CH}_{3} \mathrm{Cl}$
B $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
C $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$
D $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}_{3}$
12. Calcium oxide reacts with dilute hydrochloric acid as shown in the following equation: $\mathrm{CaO}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)$
How many moles of Calcium oxide, CaO , are required to neutralize 40 cm^{3} of $0.250 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid, HCl ? (1 mark)

A 0.020
B 0.0010
C 0.010
D 0.0050
13. Which of the following contains the greatest number of hydrogen atoms?
(1 mark)
A 1.5 moles of ammonia, $\mathrm{C}_{2} \mathrm{H}_{2}$
B 0.5 moles of methane, CH_{4}
C 1 mole of hydrogen gas, H_{2}
D 2 moles of water, $\mathrm{H}_{2} \mathrm{O}$
14. The following data were obtained from the mass spectrum of a sample of chromium.
Mass/charge ratio \% abundance
$50.0 \quad 6.3$
$52.0 \quad 82.2$
$53.0 \quad 9.1$
$54.0 \quad 2.4$
Calculate the relative atomic mass of chromium in this sample, giving your answer to three significant figures. (1 mark)
87. Using the enthalpy of combustion data given below, calculate the standard enthalpy change for the formation of methane.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})
$$

$\Delta H_{C}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \mathrm{C}(\mathrm{s})=-394 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=-286 \quad \mathrm{CH}_{4}(\mathrm{~g})=-896$

$$
\begin{aligned}
& \Delta H_{\text {reaction }}=\Sigma \Delta H_{C \text { (reactants) }}-\Sigma \Delta H_{C} \text { (products) } \\
& \Delta H_{\text {reaction }}=[(1 \mathrm{x}-394)+(2 \times-286)]-[(-896)] \\
& \quad=-70 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

88. An experiment was carried out to determine a value for the enthalpy of combustion of liquid methanol using the apparatus shown in the diagram.

Burning 3.5 g of methanol caused the temperature of 150 g of water to rise by $50^{\circ} \mathrm{C}$. Use this information to calculate a value for the enthalpy of combustion of methanol, $\mathrm{CH}_{3} \mathrm{OH}$.
$q=m c \Delta T=150 \times 4.18 \times 50=31350 J$
Since the temperature increased, $Q=\frac{q}{1000}=-31.35 \mathrm{~kJ}$
Moles of $\mathrm{CH}_{3} \mathrm{OH}=$

$$
\begin{gathered}
\frac{m a s s}{R A M}=\frac{3.5}{32}=0.101 \mathrm{~mol} \\
\Delta H=\frac{Q}{n} \\
\Delta H=\frac{-31.5}{0.101}
\end{gathered}
$$

$$
=-310 \mathrm{~kJ} \mathrm{~mol}^{-1}(3 \mathrm{sig} \mathrm{fig})
$$

